The chemical origins of life and its early evolution: an introduction

Author:

Lilley David M. J.1,Sutherland John2

Affiliation:

1. Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dow Street, Dundee DD1 5EH, UK

2. MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK

Abstract

Can we look at contemporary biology and couple this with chemical insight to propose some plausible mechanisms for the origin of life on the planet? In what follows, we examine some promising chemical reactions by which the building blocks for nucleic acids might have been created about a billion years after the Earth formed. This could have led to self-assembling systems that were based on an all-RNA metabolism, where RNA is both catalytic and informational. We consider the breadth of RNA enzymes presently existing in biology, and to what extent these might have covered a wider range of chemistry in the RNA world. Ultimately, the RNA world would probably have given way to protein-based life quite quickly, and the origins of peptidyl transferase activity are discussed below.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3