Prebiotic chemistry: a new modus operandi

Author:

Powner Matthew W.1,Sutherland John D.1

Affiliation:

1. School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, UK

Abstract

A variety of macromolecules and small molecules—(oligo)nucleotides, proteins, lipids and metabolites—are collectively considered essential to early life. However, previous schemes for the origin of life—e.g. the ‘RNA world’ hypothesis—have tended to assume the initial emergence of life based on one such molecular class followed by the sequential addition of the others, rather than the emergence of life based on a mixture of all the classes of molecules. This view is in part due to the perceived implausibility of multi-component reaction chemistry producing such a mixture. The concept of systems chemistry challenges such preconceptions by suggesting the possibility of molecular synergism in complex mixtures. If a systems chemistry method to make mixtures of all the classes of molecules considered essential for early life were to be discovered, the significant conceptual difficulties associated with pure RNA, protein, lipid or metabolism ‘worlds’ would be alleviated. Knowledge of the geochemical conditions conducive to the chemical origins of life is crucial, but cannot be inferred from a planetary sciences approach alone. Instead, insights from the organic reactivity of analytically accessible chemical subsystems can inform the search for the relevant geochemical conditions. If the common set of conditions under which these subsystems work productively, and compatibly, matches plausible geochemistry, an origins of life scenario can be inferred. Using chemical clues from multiple subsystems in this way is akin to triangulation, and constitutes a novel approach to discover the circumstances surrounding the transition from chemistry to biology. Here, we exemplify this strategy by finding common conditions under which chemical subsystems generate nucleotides and lipids in a compatible and potentially synergistic way. The conditions hint at a post-meteoritic impact origin of life scenario.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 115 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3