Abstract
AbstractOver the past few years, evidence has accrued that demonstrates that terrestrial photochemical reactions could have provided numerous (proto)biomolecules with implications for the origin of life. This chemistry simply relies on UV light, inorganic sulfur species and hydrogen cyanide. Recently, we reported that, under the same conditions, reduced phosphorus species, such as those delivered by meteorites, can be oxidized to orthophosphate, generating thiophosphate in the process. Here we describe an investigation of the properties of thiophosphate as well as additional possible means for its formation on primitive Earth. We show that several reported prebiotic reactions, including the photoreduction of thioamides, carbonyl groups and cyanohydrins, can be markedly improved, and that tetroses and pentoses can be accessed from hydrogen cyanide through a Kiliani–Fischer-type process without progressing to higher sugars. We also demonstrate that thiophosphate allows photochemical reductive aminations, and that thiophosphate chemistry allows a plausible prebiotic synthesis of the C5 moieties used in extant terpene and terpenoid biosynthesis, namely dimethylallyl alcohol and isopentenyl alcohol.
Funder
RCUK | Medical Research Council
Simons Foundation
Publisher
Springer Science and Business Media LLC
Subject
General Chemical Engineering,General Chemistry
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献