How to learn to recognize conspecific brood parasitic offspring

Author:

Shizuka Daizaburo12ORCID,Lyon Bruce E.2ORCID

Affiliation:

1. School of Biological Sciences, University of Nebraska-Lincoln, 402 Manter Hall, Lincoln, NE 68588-0118, USA

2. Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Coastal Biology Building, 130 McAllister Way, Santa Cruz, CA 95060, USA

Abstract

Recognition systems evolve to reduce the risk and costs of making recognition errors. Two main sources of recognition error include perceptual error (error arising from inability to discriminate between objects) and template error (error arising from using the wrong recognition template). We focus on how template error shapes host defence against avian brood parasites. Prior experiments in American coots ( Fulica americana ), a conspecific brood parasite, demonstrated how hosts learn to recognize brood parasitic chicks using predictable patterns of hatching order of host and parasite eggs. Here, we use these results to quantify the benefit of chick rejection as well as the cost of template error, and we then use mathematical models to explore fitness payoffs of chick recognition from different template acquisition mechanisms. We find that fitness differences between mechanisms do not fully explain aspects of the learning mechanism, such as why coots reacquire their recognition template each year. Other constraints arising from mating systems and genetic mechanisms likely influence which learning mechanism for parasitic chick recognition is optimal. Our approach highlights how mechanisms of template acquisition influence other recognition systems, including parasitic chick recognition in other brood parasite hosts. This article is part of the theme issue ‘Signal detection theory in recognition systems: from evolving models to experimental tests’.

Funder

National Geographic Society

National Science Foundation

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3