The impact of learning opportunities on the development of learning and decision-making: an experiment with passerine birds

Author:

Rojas-Ferrer Isabel1ORCID,Morand-Ferron Julie1ORCID

Affiliation:

1. Department of Biology, University of Ottawa, 30 Marie Curie Private, Ottawa, Ontario, Canada K1N 6N5

Abstract

Developmental context has been shown to influence learning abilities later in life, namely through experiments with nutritional and/or environmental constraints (i.e. lack of enrichment). However, little is known about the extent to which opportunities for learning affect the development of animal cognition, even though such opportunities are known to influence human cognitive development. We exposed young zebra finches ( Taenopygia guttata ) ( n = 26) to one of three experimental conditions, i.e. an environment where (i) colour cues reliably predicted the presence of food (associative learning), (ii) a combination of two-colour cues reliably predicted the presence of food (conditional learning), or (iii) colour cues were non-informative (control). After conducting two different discrimination tasks, our results showed that experience with predictive cues can cause increased choice accuracy and decision-making speed. Our first learning task showed that individuals in the associative learning treatment outperformed the control treatment, while task 2 showed that individuals in the conditional learning treatment had shorter latencies when making choices compared with the control treatment. We found no support for a speed–accuracy trade-off. This dataset provides a rare longitudinal and experimental examination of the effect of predictive versus non-predictive cues during development on the cognition of adult animals. This article is part of the theme issue ‘Life history and learning: how childhood, caregiving and old age shape cognition and culture in humans and other animals’.

Funder

Human Frontier Science Program

Natural Sciences and Engineering Research Council of Canada

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3