Leg muscles that mediate stability: mechanics and control of two distal extensor muscles during obstacle negotiation in the guinea fowl

Author:

Daley Monica A.1,Biewener Andrew A.2

Affiliation:

1. Structure and Motion Laboratory, Royal Veterinary College, University of London, Hawskhead Lane, Hatfield, Hertfordshire AL9 7TA, UK

2. Concord Field Station, Harvard University, 100 Old Causeway Road, Bedford, MA 01730, USA

Abstract

Here, we used an obstacle treadmill experiment to investigate the neuromuscular control of locomotion in uneven terrain. We measuredin vivofunction of two distal muscles of the guinea fowl, lateral gastrocnemius (LG) and digital flexor-IV (DF), during level running, and two uneven terrains, with 5 and 7 cm obstacles. Uneven terrain required one step onto an obstacle every four to five strides. We compared both perturbed and unperturbed strides in uneven terrain to level terrain. When the bird stepped onto an obstacle, the leg became crouched, both muscles acted at longer lengths and produced greater work, and body height increased. Muscle activation increased on obstacle strides in the LG, but not the DF, suggesting a greater reflex contribution to LG. In unperturbed strides in uneven terrain, swing pre-activation of DF increased by 5 per cent compared with level terrain, suggesting feed-forward tuning of leg impedance. Across conditions, the neuromechanical factors in work output differed between the two muscles, probably due to differences in muscle–tendon architecture. LG work depended primarily on fascicle length, whereas DF work depended on both length and velocity during loading. These distal muscles appear to play a critical role in stability by rapidly sensing and responding to altered leg–ground interaction.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3