Linking in vivo muscle dynamics to force–length and force–velocity properties reveals that guinea fowl lateral gastrocnemius operates at shorter than optimal lengths

Author:

Janneke Schwaner M.1ORCID,Mayfield Dean L.12,Azizi Emanuel1,Daley Monica A.13ORCID

Affiliation:

1. University of California, Irvine 1 Department of Ecology and Evolutionary Biology , , Irvine, CA 92697 , USA

2. University of California, Riverside 2 Department of Evolution, Ecology, and Organismal Biology , , Riverside, CA 92521 , USA

3. Center for Integrative Movement Sciences, University of California 3 , Irvine, Irvine, CA 92617 , USA

Abstract

ABSTRACT The isometric force–length (F–L) and isotonic force–velocity (F–V) relationships characterize the contractile properties of skeletal muscle under controlled conditions, yet it remains unclear how these properties relate to in vivo muscle function. Here, we map the in situ F–L and F–V characteristics of guinea fowl (Numida meleagris) lateral gastrocnemius (LG) to the in vivo operating range during walking and running. We test the hypothesis that muscle fascicles operate on the F–L plateau, near the optimal length for force (L0) and near velocities that maximize power output (Vopt) during walking and running. We found that in vivo LG velocities are consistent with optimizing power during work production, and economy of force at higher loads. However, LG does not operate near L0 at higher loads. LG length was near L0 at the time of electromyography (EMG) onset but shortened rapidly such that force development during stance occurred on the ascending limb of the F–L curve, around 0.8L0. Shortening across L0 in late swing might optimize potential for rapid force development near the swing–stance transition, providing resistance to unexpected perturbations that require rapid force development. We also found evidence of in vivo passive force rise in late swing, without EMG activity, at lengths where in situ passive force is zero, suggesting that dynamic viscoelastic effects contribute to in vivo force development. Comparison of in vivo operating ranges with F–L and F–V properties suggests the need for new approaches to characterize muscle properties in controlled conditions that more closely resemble in vivo dynamics.

Funder

KU Leuven

National Science Foundation

National Institutes of Health

Publisher

The Company of Biologists

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3