A model of subjective report and objective discrimination as categorical decisions in a vast representational space

Author:

King J-R.123,Dehaene S.1245

Affiliation:

1. Cognitive Neuroimaging Unit, Institut National de la Santé et de la Recherche Médicale, U992, Gif/Yvette 91191, France

2. NeuroSpin Center, Institute of BioImaging Commissariat à l'Energie Atomique, Gif/Yvette 91191, France

3. Institut du Cerveau et de la Moelle Épinière Research Center, Institut National de la Santé et de la Recherche Médicale, Paris U975, France

4. Department of Life Sciences, Université Paris 11, Orsay, France

5. Collège de France, Paris 75005, France

Abstract

Subliminal perception studies have shown that one can objectively discriminate a stimulus without subjectively perceiving it. We show how a minimalist framework based on Signal Detection Theory and Bayesian inference can account for this dissociation, by describing subjective and objective tasks with similar decision-theoretic mechanisms. Each of these tasks relies on distinct response classes, and therefore distinct priors and decision boundaries. As a result, they may reach different conclusions. By formalizing, within the same framework, forced-choice discrimination responses, subjective visibility reports and confidence ratings, we show that this decision model suffices to account for several classical characteristics of conscious and unconscious perception. Furthermore, the model provides a set of original predictions on the nonlinear profiles of discrimination performance obtained at various levels of visibility. We successfully test one such prediction in a novel experiment: when varying continuously the degree of perceptual ambiguity between two visual symbols presented at perceptual threshold, identification performance varies quasi-linearly when the stimulus is unseen and in an ‘all-or-none’ manner when it is seen. The present model highlights how conscious and non-conscious decisions may correspond to distinct categorizations of the same stimulus encoded by a high-dimensional neuronal population vector.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3