Carbon dioxide and the uneasy interactions of trees and savannah grasses

Author:

Bond William J.1,Midgley Guy F.2

Affiliation:

1. Botany Department, University of Cape Town, Rondebosch 7701, South Africa

2. Climate Change and Bioadaptation Programme, South African National Biodiversity Institute, Private Bag X7, Claremont, Cape Town 7735, South Africa

Abstract

Savannahs are a mixture of trees and grasses often occurring as alternate states to closed forests. Savannah fires are frequent where grass productivity is high in the wet season. Fires help maintain grassy vegetation where the climate is suitable for woodlands or forests. Saplings in savannahs are particularly vulnerable to topkill of above-ground biomass. Larger trees are more fire-resistant and suffer little damage when burnt. Recruitment to large mature tree size classes depends on sapling growth rates to fire-resistant sizes and the time between fires. Carbon dioxide (CO 2 ) can influence the growth rate of juvenile plants, thereby affecting tree recruitment and the conversion of open savannahs to woodlands. Trees have increased in many savannahs throughout the world, whereas some humid savannahs are being invaded by forests. CO 2 has been implicated in this woody increase but attribution to global drivers has been controversial where changes in grazing and fire have also occurred. We report on diverse tests of the magnitude of CO 2 effects on both ancient and modern ecosystems with a particular focus on African savannahs. Large increases in trees of mesic savannahs in the region cannot easily be explained by land use change but are consistent with experimental and simulation studies of CO 2 effects. Changes in arid savannahs seem less obviously linked to CO 2 effects and may be driven more by overgrazing. Large-scale shifts in the tree–grass balance in the past and the future need to be better understood. They not only have major impacts on the ecology of grassy ecosystems but also on Earth–atmosphere linkages and the global carbon cycle in ways that are still being discovered.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Reference91 articles.

Cited by 339 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Remote sensing applied to the study of fire in savannas: A literature review;Ecological Informatics;2024-03

2. Vegetation and fire history of Bwabwata National Park, Namibia;Review of Palaeobotany and Palynology;2024-01

3. C4 Plants;Encyclopedia of Biodiversity;2024

4. The Application of Paleoenvironmental Research in Supporting Land Management Approaches and Conservation in South Africa;Sustainability of Southern African Ecosystems under Global Change;2024

5. Synthesis and Outlook on Future Research and Scientific Education in Southern Africa;Sustainability of Southern African Ecosystems under Global Change;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3