Dynamic ecosystem assembly and escaping the “fire trap” in the tropics: insights from FATES_15.0.0

Author:

Shuman Jacquelyn K.,Fisher Rosie A.,Koven CharlesORCID,Knox Ryan,Kueppers Lara,Xu Chonggang

Abstract

Abstract. Fire is a fundamental part of the Earth system, with impacts on vegetation structure, biomass, and community composition, the latter mediated in part via key fire-tolerance traits, such as bark thickness. Due to anthropogenic climate change and land use pressure, fire regimes are changing across the world, and fire risk has already increased across much of the tropics. Projecting the impacts of these changes at global scales requires that we capture the selective force of fire on vegetation distribution through vegetation functional traits and size structure. We have adapted the fire behavior and effects module, SPITFIRE (SPread and InTensity of FIRE), for use with the Functionally Assembled Terrestrial Ecosystem Simulator (FATES), a size-structured vegetation demographic model. We test how climate, fire regime, and fire-tolerance plant traits interact to determine the biogeography of tropical forests and grasslands. We assign different fire-tolerance strategies based on crown, leaf, and bark characteristics, which are key observed fire-tolerance traits across woody plants. For these simulations, three types of vegetation compete for resources: a fire-vulnerable tree with thin bark, a vulnerable deep crown, and fire-intolerant foliage; a fire-tolerant tree with thick bark, a thin crown, and fire-tolerant foliage; and a fire-promoting C4 grass. We explore the model sensitivity to a critical parameter governing fuel moisture and show that drier fuels promote increased burning, an expansion of area for grass and fire-tolerant trees, and a reduction of area for fire-vulnerable trees. This conversion to lower biomass or grass areas with increased fuel drying results in increased fire-burned area and its effects, which could feed back to local climate variables. Simulated size-based fire mortality for trees less than 20 cm in diameter and those with fire-vulnerable traits is higher than that for larger and/or fire-tolerant trees, in agreement with observations. Fire-disturbed forests demonstrate reasonable productivity and capture observed patterns of aboveground biomass in areas dominated by natural vegetation for the recent historical period but have a large bias in less disturbed areas. Though the model predicts a greater extent of burned fraction than observed in areas with grass dominance, the resulting biogeography of fire-tolerant, thick-bark trees and fire-vulnerable, thin-bark trees corresponds to observations across the tropics. In areas with more than 2500 mm of precipitation, simulated fire frequency and burned area are low, with fire intensities below 150 kW m−1, consistent with observed understory fire behavior across the Amazon. Areas drier than this demonstrate fire intensities consistent with those measured in savannas and grasslands, with high values up to 4000 kW m−1. The results support a positive grass–fire feedback across the region and suggest that forests which have existed without frequent burning may be vulnerable at higher fire intensities, which is of greater concern under intensifying climate and land use pressures. The ability of FATES to capture the connection between fire disturbance and plant fire-tolerance strategies in determining biogeography provides a useful tool for assessing the vulnerability and resilience of these critical carbon storage areas under changing conditions across the tropics.

Funder

National Center for Atmospheric Research

Office of Science

Horizon 2020

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3