Scaling of xylem vessels and veins within the leaves of oak species

Author:

Coomes David A1,Heathcote Steven1,Godfrey Elinor R1,Shepherd James J1,Sack Lawren2

Affiliation:

1. University of CambridgeDowning Street, Cambridge CB2 3EA, UK

2. Department of Ecology and Evolutionary Biology, University of CaliforniaLos Angeles, 621 Charles E. Young Drive South, Los Angeles, CA 90095-1606, USA

Abstract

General models of plant vascular architecture, based on scaling of pipe diameters to remove the length dependence of hydraulic resistance within the xylem, have attracted strong interest. However, these models have neglected to consider the leaf, an important hydraulic component; they assume all leaves to have similar hydraulic properties, including similar pipe diameters in the petiole. We examine the scaling of the leaf xylem in 10 temperate oak species, an important hydraulic component. The mean hydraulic diameter of petiole xylem vessels varied by 30% among the 10 oak species. Conduit diameters narrowed from the petiole to the midrib to the secondary veins, consistent with resistance minimization, but the power function scaling exponent differed from that predicted for stems. Leaf size was an organizing trait within and across species. These findings indicate that leaf vasculature needs to be included in whole-plant scaling models, for these to accurately reflect and predict whole-plant transport and its implications for performance and ecology.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,Agricultural and Biological Sciences (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3