Petiole XLA (xylem to leaf area ratio) integrates hydraulic safety and efficiency across a diverse group of eucalypt leaves

Author:

Blackman Chris J.1ORCID,Halliwell Ben1,Hartill Gabrielle E.1,Brodribb Timothy J.1

Affiliation:

1. ARC Centre of Excellence for Plant Success in Nature and Agriculture, School of Natural Sciences University of Tasmania Hobart Tasmania Australia

Abstract

AbstractA theoretical trade‐off between the efficiency and safety of water transport systems in plants is used to explain diverse ecological patterns, from tree size to community structure. Despite its pervasive influence, this theory has marginal empirical support. This may be partially due to obfuscation of associations by wide phylogenetic sampling or non‐standard sampling between studies. To address this, we examine the coordination of structural and anatomical traits linked to hydraulic safety and efficiency in the leaves of an ecologically diverse group of eucalypts. We introduce a new trait for characterising leaf water transport function measured as the cross‐sectional XA at the petiole divided by the downstream leaf area (XLApetiole). Variation in XLApetiole revealed support for a safety‐efficiency trade‐off in eucalypt leaves. XLApetiole was negatively correlated with theoretical petiole xylem conductivity (Ks_petiole) and strongly negatively correlated with leaf cavitation vulnerability (Ψ50leaf). Species with lower Ψ50leaf exhibited petiole xylem with narrower vessels and greater fibre wall area fractions. Our findings highlight XLApetiole as a novel integrative trait that provides insights into the evolution of leaf form and function in eucalypts and holds promise for wider use among diverse species.

Publisher

Wiley

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3