The influence of elastic ankle exoskeletons on lower limb mechanical energetics during unexpected perturbations

Author:

Williamson James L.1ORCID,Lichtwark Glen A.2ORCID,Sawicki Gregory S.3ORCID,Dick Taylor J. M.1ORCID

Affiliation:

1. School of Biomedical Sciences, University of Queensland, St Lucia, Queensland 4072, Australia

2. School of Human Movement and Nutrition Sciences, University of Queensland, St Lucia, Queensland 4072, Australia

3. George W. Woodruff School of Mechanical Engineering and School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA

Abstract

Passive elastic ankle exoskeletons have been used to augment locomotor performance during walking, running and hopping. In this study, we aimed to determine how these passive devices influence lower limb joint and whole-body mechanical energetics to maintain stable upright hopping during rapid, unexpected perturbations. We recorded lower limb kinematics and kinetics while participants hopped with exoskeleton assistance (0, 76 and 91 Nm rad −1 ) on elevated platforms (15 and 20 cm) which were rapidly removed at an unknown time. Given that springs cannot generate nor dissipate energy, we hypothesized that passive ankle exoskeletons would reduce stability during an unexpected perturbation. Our results demonstrate that passive exoskeletons lead to a brief period of instability during unexpected perturbations — characterized by increased hop height. However, users rapidly stabilize via a distal-to-proximal redistribution of joint work such that the knee performs an increased energy dissipation role and stability is regained within one hop cycle. Together, these results demonstrate that despite the inability of elastic exoskeletons to directly dissipate mechanical energy, humans can still effectively dissipate the additional energy of a perturbation, regain stability and recover from a rapid unexpected vertical perturbation to maintain upright hopping.

Publisher

The Royal Society

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3