Molecular interaction of a putative inhibitor with bacterial SHV, an enzyme associated with antibiotic resistance

Author:

Shakil Shazi123ORCID,Danish Rizvi Syed M.4,Greig Nigel H.5

Affiliation:

1. King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia

2. Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia

3. Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia

4. Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail, Saudi Arabia

5. Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA

Abstract

Tackling the ever-looming threat of antibiotic resistance remains a challenge for clinicians and microbiologists across the globe. Sulfhydryl variable (SHV) is a known bacterial enzyme associated with antibiotic resistance. The SHV enzyme has many variants. The present article describes identification and molecular interaction of a putative inhibitor with the bacterial SHV enzyme as a step towards novel antibacterial drug discovery. The MCULE-platform was used for screening a collection of 5 000 000 ligand molecules to evaluate their binding potential to the bacterial SHV-1 enzyme. Estimation of pharmacokinetic features was realized with the aid of the ‘SWISS ADME’ tool. Toxicity-checks were also performed. The docked complex of ‘the top screened out ligand’ and ‘the bacterial SHV-1 protein’ was subjected to molecular dynamics simulation of 101 ns. The obtained ligand molecule, 1,1'-(4H,8H-Bis[1,2,5]oxadiazolo[3,4-b:3′,4'-e]pyrazine-4,8-diyl)diethanone, displayed the most favourable binding interactions with bacterial SHV-1. A total of 15 amino acid residues were found to hold the ligand in the binding site of SHV-1. Noticeably, 12 of the 15 residues were found as common to the binding residues of the reference (PDB ID: 4ZAM). The RMSD values plotted against the simulation time showed that nearby 11 ns, equilibrium was reached and, thenceforth, the ‘SHV-1-Top ligand’ complex remained typically stable. Starting from around 11 ns and straight to 101 ns, the backbone RMSD fluctuations were found to be confined inside a range of 1.0–1.6 Å. The ligand, 1,1′-(4H,8H-Bis[1,2,5]oxadiazolo[3,4-b:3′,4′-e]pyrazine-4,8-diyl)diethanone, satisfied ADMET criteria. Furthermore, the practicability of the described ‘SHV-1-Top ligand’ complex was reinforced by a comprehensive molecular dynamics simulation of 101 ns. This ligand hence can be considered a promising lead for antibiotic design against SHV-1 producing resistant bacteria, and thus warrants wet laboratory evaluation.

Funder

the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia

Publisher

The Royal Society

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3