Experimental addition of marine-derived nutrients affects wildflower traits in a coastal meta-ecosystem

Author:

Dennert Allison M.1ORCID,Elle E.1,Reynolds John D.1

Affiliation:

1. Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada V5A 1S6

Abstract

Organismal movement can bring individuals, resources and novel interactions across ecosystem boundaries and into recipient habitats, thereby forming meta-ecosystems. For example, Pacific salmon ecosystems receive large marine-derived nitrogen subsidies during annual spawning events, which can have a wide range of effects on aquatic and terrestrial plant species and communities. In this study, we evaluate the effects of cross-ecosystem nutrient subsidies on terrestrial plant growth and reproduction. We conducted a large-scale field experiment with four treatments: (i) addition of a pink salmon ( Oncorhynchus gorbuscha ) carcass, (ii) addition of the drift seaweed rockweed ( Fucus distichus ), (iii) addition of both salmon + rockweed, and (iv) a control. We examined treatment effects on leaf nitrogen and fitness-associated floral traits in four common estuarine wildflower species. We found elevated leaf ∂ 15 N in all plant species and all sampling years in treatments with salmon carcass additions but did not observe any differences in leaf per cent nitrogen. We also observed larger leaf area in two species, a context-dependent increase in floral display area in two species, and a limited increase in plant seed set in response to both salmon carcass treatments. In sum, our study suggests that marine nutrients can affect terrestrial plant growth and reproduction.

Funder

Natural Sciences and Engineering Research Council of Canada

Tom Buell BC Leadership Chair Endowment

Publisher

The Royal Society

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3