On the use of models in understanding the rise of complex life

Author:

Lenton Timothy M.1ORCID

Affiliation:

1. Global Systems Institute, University of Exeter, Exeter EX4 4QE, UK

Abstract

Recently, several seemingly irreconcilably different models have been proposed for relationships between Earth system processes and the rise of complex life. These models provide very different scenarios of Proterozoic atmospheric oxygen and ocean nutrient levels, whether they constrained complex life, and of how the rise of complex life affected biogeochemical conditions. For non-modellers, it can be hard to evaluate which—if any—of the models and their results have more credence—hence this article. I briefly review relevant hypotheses, how models are being used to incarnate and sometimes test those hypotheses, and key principles of biogeochemical cycling models should embody. Then I critically review the use of biogeochemical models in: inferring key variables from proxies; reconstructing ancient biogeochemical cycling; and examining how complex life affected biogeochemical cycling. Problems are found in published model results purporting to demonstrate long-term stable states of very low Proterozoic atmospheric p O 2 and ocean P levels. I explain what they stem from and highlight key empirical uncertainties that need to be resolved. Then I suggest how models and data can be better combined to advance our scientific understanding of the relationship between Earth system processes and the rise of complex life.

Funder

Natural Environment Research Council

Publisher

The Royal Society

Subject

Biomedical Engineering,Biomaterials,Biochemistry,Bioengineering,Biophysics,Biotechnology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3