Divergence time estimates for the hypoxia‐inducible factor‐1 alpha (HIF1α) reveal an ancient emergence of animals in low‐oxygen environments

Author:

Belato Flavia A.1ORCID,Mello Beatriz2,Coates Christopher J.3,Halanych Kenneth M.4,Brown Federico D.1,Morandini André C.1,de Moraes Leme Juliana5,Trindade Ricardo I. F.6,Costa‐Paiva Elisa Maria16ORCID

Affiliation:

1. Institute of Biosciences, Department of Zoology University of Sao Paulo São Paulo – SP Brazil

2. Biology Institute, Genetics Department Federal University of Rio de Janeiro Rio de Janeiro – RJ Brazil

3. Zoology, Ryan Institute, School of Natural Sciences University of Galway Galway Ireland

4. Center for Marine Science University of North Carolina Wilmington Wilmington North Carolina USA

5. Geoscience Institute University of Sao Paulo São Paulo – SP Brazil

6. Institute of Astronomy, Geophysics and Atmospheric Sciences University of Sao Paulo São Paulo – SP Brazil

Abstract

AbstractUnveiling the tempo and mode of animal evolution is necessary to understand the links between environmental changes and biological innovation. Although the earliest unambiguous metazoan fossils date to the late Ediacaran period, molecular clock estimates agree that the last common ancestor (LCA) of all extant animals emerged ~850 Ma, in the Tonian period, before the oldest evidence for widespread ocean oxygenation at ~635–560 Ma in the Ediacaran period. Metazoans are aerobic organisms, that is, they are dependent on oxygen to survive. In low‐oxygen conditions, most animals have an evolutionarily conserved pathway for maintaining oxygen homeostasis that triggers physiological changes in gene expression via the hypoxia‐inducible factor (HIFa). However, here we confirm the absence of the characteristic HIFa protein domain responsible for the oxygen sensing of HIFa in sponges and ctenophores, indicating the LCA of metazoans lacked the functional protein domain as well, and so could have maintained their transcription levels unaltered under the very low‐oxygen concentrations of their environments. Using Bayesian relaxed molecular clock dating, we inferred that the ancestral gene lineage responsible for HIFa arose in the Mesoproterozoic Era, ~1273 Ma (Credibility Interval 957–1621 Ma), consistent with the idea that important genetic machinery associated with animals evolved much earlier than the LCA of animals. Our data suggest at least two duplication events in the evolutionary history of HIFa, which generated three vertebrate paralogs, products of the two successive whole‐genome duplications that occurred in the vertebrate LCA. Overall, our results support the hypothesis of a pre‐Tonian emergence of metazoans under low‐oxygen conditions, and an increase in oxygen response elements during animal evolution.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Fundação de Amparo à Pesquisa do Estado de São Paulo

National Science Foundation

Publisher

Wiley

Subject

General Earth and Planetary Sciences,General Environmental Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3