Preconcentration with Chlorella vulgaris combined with energy dispersive X-ray fluorescence spectrometry for rapid determination of Cd in water

Author:

Gan Tingting12ORCID,Zhao Nanjing12,Yin Gaofang12,Chen Min123,Wang Xiang123,Hua Hui123

Affiliation:

1. Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China

2. Key Laboratory of Optical Monitoring Technology for Environment, Anhui Province, Hefei 230031, People's Republic of China

3. University of Science and Technology of China, Hefei 230026, People's Republic of China

Abstract

Freshwater green algae Chlorella vulgaris was selected as an adsorbent, and a simple, rapid, economical and environmentally friendly method for the detection of heavy metal Cd in water samples based on preconcentration with C. vulgaris combined with energy dispersive X-ray fluorescence (EDXRF) spectrometry was proposed.  Chlorella vulgaris could directly and rapidly adsorb Cd 2+ without any pretreatment, and the maximum adsorption efficiency could be obtained when the contact time was 1 min with an optimal pH of 10. The obtained Cd-enriched thin samples after preconcentration with C. vulgaris by suction filtration of reaction solution had very good uniformity, which could be directly measured by EDXRF spectrometry, and the net integral fluorescence intensity of Cd K α characteristic peak had a very good linear relationship with the initial concentration of Cd in the range of 0.703–74.957 µg ml −1 with a correlation coefficient of 0.9979. When the Cd thin samples with a Cd-enriched region of 15.1 mm in diameter were formed by the developed preconcentration method with suction filtration of 10 ml reaction solution, the detection limit of this method was 0.0654 µg ml −1 , which was lower than the maximum allowable discharge concentration of Cd in various industrial wastewaters. The proposed method was simple to operate, and could effectively remove the influence of matrix effect of water samples and effectively improve the sensitivity and stability of EDXRF spectrometry directly detecting heavy metals in water samples, which was successfully applied to detect Cd in real water samples with satisfactory results, and the recoveries ranged from 94.80% to 116.94%. Moreover, this method can be applied to the rapid detection and early warning of excessive Cd in discharged industrial wastewaters. This work will provide a methodological basis for the development of rapid and online monitoring technology and instrument of heavy metal pollutants in water.

Funder

the Anhui Provincial Excellent Youth Science Foundation of China

the Chinese Academy of Sciences Instrument and Equipment Function Development Technology Innovation Project

the National Natural Science Foundation of China

the National Key Research and Development Program of China

the Marine National Laboratory Open Foundation Program of China

Publisher

The Royal Society

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3