Cracking failure of curved hollow tree trunks

Author:

Huang Yan-San1ORCID,Chiang Pei-Lin2,Kao Ying-Chuan2,Hsu Fu-Lan3,Juang Jia-Yang2ORCID

Affiliation:

1. Department of Forestry, National Chung Hsing University, 145 Xingda Road, South Dist., Taichung City 402, Taiwan

2. Department of Mechanical Engineering, National Taiwan University, Taipei 10617, Taiwan

3. Division of Forest Chemistry, Taiwan Forestry Research Institute, 53 Nanhai Road, Taipei 10066, Taiwan

Abstract

Understanding the failure modes of curved hollow tree trunks is essential from both safety and conservation perspectives. Despite extensive research, the underlying mechanism that determines the cracking failure of curved hollow tree trunks remains unclear due to the lack of theoretical analysis that considers both the initial curvature and orthotropic material properties. Here we derive new mathematical expressions for predicting the bending moment, M crack , at which the cracking failure occurs. The failure mode of a tree species is then determined, as a function of t / R and cR , by comparing M crack with M bend , where t , R and c are, respectively, the trunk wall thickness, outer radius and initial curvature; M bend is the bending moment for conventional bending failure. Our equation shows that M crack is proportional to the tangential tensile strength of wood σ T , increases with t / R , and decreases with the final cR . We analyse 11 tree species and find that hardwoods are more likely to fail in conventional bending, whereas softwoods tend to break due to cracking. This is due to the softwoods' much smaller tangential tensile strength, as observed from the data of 66 hardwoods and 43 softwoods. For larger cR , cracking failure is easier to occur in curvature-decreasing bending than curvature-increasing due to additional normal tensile force F acting on the neutral cross-section; on the other hand, for smaller cR , bending failure is easier to occur due to decreased final curvature. Our formulae are applicable to other natural and man-made curved hollow beams with orthotropic material properties. Our findings provide insights for those managing trees in urban situations and those managing for conservation of hollow-dependent fauna in both urban and rural settings.

Funder

Council of Agriculture

National Taiwan University

Ministry of Science and Technology, Taiwan

Publisher

The Royal Society

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3