Designing Bioinspired Composite Structures via Genetic Algorithm and Conditional Variational Autoencoder

Author:

Chiu Yi-Hung,Liao Ya-Hsuan,Juang Jia-YangORCID

Abstract

Designing composite materials with tailored stiffness and toughness is challenging due to the massive number of possible material and geometry combinations. Although various studies have applied machine learning techniques and optimization methods to tackle this problem, we still lack a complete understanding of the material effects at different positions and a systematic experimental procedure to validate the results. Here we study a two-dimensional (2D) binary composite system with an edge crack and grid-like structure using a Genetic Algorithm (GA) and Conditional Variational Autoencoder (CVAE), which can design a composite with desired stiffness and toughness. The fitness of each design is evaluated using the negative mean square error of their predicted stiffness and toughness and the target values. We use finite element simulations to generate a machine-learning dataset and perform tensile tests on 3D-printed specimens to validate our results. We show that adding soft material behind the crack tip, instead of ahead of the tip, tremendously increases the overall toughness of the composite. We also show that while GA generates composite designs with slightly better accuracy (both methods perform well, with errors below 20%), CVAE takes considerably less time (~1/7500) to generate designs. Our findings may provide insights into the effect of adding soft material at different locations of a composite system and may also provide guidelines for conducting experiments and Explainable Artificial Intelligence (XAI) to validate the results.

Funder

Ministry of Science and Technology (MOST) of Taiwan

National Taiwan University

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3