Fundamental limitations of network reconstruction from temporal data

Author:

Angulo Marco Tulio1ORCID,Moreno Jaime A.2,Lippner Gabor3,Barabási Albert-László456,Liu Yang-Yu578ORCID

Affiliation:

1. Institute of Mathematics, Universidad Nacional Autónoma de México, Juriquilla 76230, México

2. Institute of Engineering, Universidad Nacional Autónoma de México, CdMx 04510, México

3. Department of Mathematics, Northeastern University, Boston MA 02115, USA

4. Center for Complex Networks Research, Northeastern University, Boston MA 02115, USA

5. Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA

6. Center for Network Science, Central European University, Budapest 1052, Hungary

7. Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA

8. Harvard Medical School, Boston, MA 02115, USA

Abstract

Inferring properties of the interaction matrix that characterizes how nodes in a networked system directly interact with each other is a well-known network reconstruction problem. Despite a decade of extensive studies, network reconstruction remains an outstanding challenge. The fundamental limitations governing which properties of the interaction matrix (e.g. adjacency pattern, sign pattern or degree sequence) can be inferred from given temporal data of individual nodes remain unknown. Here, we rigorously derive the necessary conditions to reconstruct any property of the interaction matrix. Counterintuitively, we find that reconstructing any property of the interaction matrix is generically as difficult as reconstructing the interaction matrix itself, requiring equally informative temporal data. Revealing these fundamental limitations sheds light on the design of better network reconstruction algorithms that offer practical improvements over existing methods.

Funder

CONACyT postdoctoral

John Templeton Foundation

European Commission

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3