Abstract
AbstractInferring the topology of a network from network dynamics is a significant problem with both theoretical research significance and practical value. This paper considers how to reconstruct the network topology according to the continuous-time data on the network. Inspired by the generative adversarial network(GAN), we design a deep learning framework based on network continuous-time data. The framework predicts the edge connection probability between network nodes by learning the correlation between network node state vectors. To verify the accuracy and adaptability of our method, we conducted extensive experiments on scale-free networks and small-world networks at different network scales using three different dynamics: heat diffusion dynamics, mutualistic interaction dynamics, and gene regulation dynamics. Experimental results show that our method significantly outperforms the other five traditional correlation indices, which demonstrates that our method can reconstruct the topology of different scale networks well under different network dynamics.
Funder
National Natural Science Foundation of China
Huxiang Youth Talent Support Program
Innovative Team and Outstanding Talent Program of Colleges and Universities in Guangxi
Key Research and Development Program of Hunan Province of China
Publisher
Springer Science and Business Media LLC
Subject
Computational Mathematics,Engineering (miscellaneous),Information Systems,Artificial Intelligence
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献