Preserving node similarity adversarial learning graph representation with graph neural network

Author:

Yang Shangying1,Zhang Yinglong1ORCID,E Jiawei1,Xia Xuewen1,Xu Xing1

Affiliation:

1. School of Physics and Information Engineering Minnan Normal University Zhangzhou Fujian China

Abstract

AbstractIn recent years, graph neural networks (GNNs) have showcased a strong ability to learn graph representations and have been widely used in various practical applications. However, many currently proposed GNN‐based representation learning methods do not retain neighbor‐based node similarity well, and this structural information is crucial in many cases. To address this issue, drawing inspiration from generative adversarial networks (GANs), we propose PNS‐AGNN (i.e., Preserving Node Similarity Adversarial Graph Neural Networks), a novel framework for acquiring graph representations, which can preserve neighbor‐based node similarity of the original graph and efficiently extract the nonlinear structural features of the graph. Specifically, we propose a new positive sample allocation strategy based on a node similarity index, where the generator can generate vector representations that satisfy node similarity through adversarial training. In addition, we also adopt an improved GNN as the discriminator, which utilizes the original graph structure for recursive neighborhood aggregation to maintain the local structure and feature information of nodes, thereby enhancing the graph representation's ability. Finally, we experimentally demonstrate that PNS‐AGNN significantly improves various tasks, including link prediction, node classification, and visualization.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Fujian Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3