Three-dimensional extent of flow stagnation in transcatheter heart valves

Author:

Raghav Vrishank1ORCID,Clifford Chris1,Midha Prem23,Okafor Ikechukwu2,Thurow Brian1,Yoganathan Ajit2

Affiliation:

1. Auburn University, Auburn, AL 36849, USA

2. Georgia Institute of Technology, Atlanta, GA 30332, USA

3. Exponent, Inc., Philadelphia, PA 19104, USA

Abstract

The recent unexpected discovery of thrombosis in transcatheter heart valves (THVs) has led to increased concerns of long-term valve durability. Based on the clinical evidence combined with Virchow's triad, the primary hypothesis is that low-velocity blood flow around the valve could be a primary cause for thrombosis. However, due to limited optical access in such unsteady three-dimensional biomedical flows, measurements are challenging. In this study, for the first time, we employ a novel single camera volumetric velocimetry technique to investigate unsteady three-dimensional cardiovascular flows. Validation of the novel volumetric velocimetry technique with standard planar particle image velocimetry (PIV) technique demonstrated the feasibility of adopting this new technique to investigate biomedical flows. This technique was used to quantify the three-dimensional velocity field in the vicinity of a validated, custom developed, transparent THV in a bench-top pulsatile flow loop. Large volumetric regions of flow stagnation were observed in the neo-sinus throughout the cardiac cycle, with stagnation defined as a velocity magnitude lower than 0.05 m s −1 . The volumetric scalar viscous shear stress quantified via the three-dimensional shear stress tensor was within the range of low shear-inducing thrombosis observed in the literature. Such high-fidelity volumetric quantitative data and novel imaging techniques used to obtain it will enable fundamental investigation of heart valve thrombosis in addition to providing a reliable and robust database for validation of computational tools.

Funder

American Heart Association

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3