Consensus and polarization in competing complex contagion processes

Author:

Vasconcelos Vítor V.1ORCID,Levin Simon A.1ORCID,Pinheiro Flávio L.23ORCID

Affiliation:

1. Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA

2. Nova Information Management School (NOVA IMS), Universidade Nova de Lisboa, Lisboa, Portugal

3. The MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA

Abstract

The rate of adoption of new information depends on reinforcement from multiple sources in a way that often cannot be described by simple contagion processes. In such cases, contagion is said to be complex. Complex contagion happens in the diffusion of human behaviours, innovations and knowledge. Based on that evidence, we propose a model that considers multiple, potentially asymmetric and competing contagion processes and analyse its respective population-wide dynamics, bringing together ideas from complex contagion, opinion dynamics, evolutionary game theory and language competition by shifting the focus from individuals to the properties of the diffusing processes. We show that our model spans a dynamical space in which the population exhibits patterns of consensus, dominance, and, importantly, different types of polarization, a more diverse dynamical environment that contrasts with single simple contagion processes. We show how these patterns emerge and how different population structures modify them through a natural development of spatial correlations: structured interactions increase the range of the dominance regime by reducing that of dynamic polarization, tight modular structures can generate structural polarization, depending on the interplay between fundamental properties of the processes and the modularity of the interaction network.

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Negative social tipping dynamics resulting from and reinforcing Earth system destabilization;Earth System Dynamics;2024-09-10

2. The contribution of movement to social network structure and spreading dynamics under simple and complex transmission;Philosophical Transactions of the Royal Society B: Biological Sciences;2024-09-04

3. A mechanistic model of gossip, reputations, and cooperation;Proceedings of the National Academy of Sciences;2024-05-08

4. Opinion dynamics on biased dynamical networks: Beyond rare opinion updating;Chaos: An Interdisciplinary Journal of Nonlinear Science;2024-03-01

5. How social rewiring preferences bridge polarized communities;Chaos, Solitons & Fractals;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3