Thermal efficiency extends distance and variety for honeybee foragers: analysis of the energetics of nectar collection and desiccation by Apis mellifera

Author:

Mitchell Derek1ORCID

Affiliation:

1. School of Mechanical Engineering, Leeds University, Leeds Yorkshire, UK

Abstract

The desiccation of nectar to produce honey by honeybees ( Apis mellifera L.) is an energy-intensive process, as it involves a quasi-isothermal change in the concentration of sugars from typically 20 to 80% by vaporization (honey ripening). This analysis creates mathematical models for: the collected nectar to honey ratio; energy recovery ratio; honey energy margin; and the break-even distance, which includes the factors of nectar concentration and the distance to the nectar from the nest; energetics of desiccation and a new factor, thermal energy efficiency (TEE) of nectar desiccation. These models show a significant proportion of delivered energy in the nectar must be used in desiccation, and that there is a strong connection between TEE and nest lumped thermal conductance with colony behaviour. They show the connection between TEE and honeybee colony success, or failure, in the rate of return, in terms of distance or quality of foraging. Consequently, TEE is a key parameter in honeybee populations and foraging modelling. For bee keeping, it quantifies the summer benefits of a key hive design parameter, hive thermal conductance and gives a sound theoretical basis for improving honey yields, as seen in expanded polystyrene hives.

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Reference75 articles.

1. Studies on the changes in nectar concentration produced by the honeybee, Apis mellifera. Part I. Changes which occur between the flower and the hive;Park OW;Iowa Agric. Home Econ. Exp. Stn. Res. Bull.,1932

2. A Look into the Cell: Honey Storage in Honey Bees, Apis mellifera

3. The Storing and Ripening of Honey by Honeybees

4. Collective thermoregulation in bee clusters

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3