In vivo effects of different orthodontic loading on root resorption and correlation with mechanobiological stimulus in periodontal ligament

Author:

Zhong Jingxiao1,Chen Junning23,Weinkamer Richard3,Darendeliler M. Ali4,Swain Michael V.14,Sue Andrian1,Zheng Keke1,Li Qing1ORCID

Affiliation:

1. School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, Australia

2. College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK

3. Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany

4. Faculty of Dentistry, Discipline of Orthodontics, University of Sydney, Sydney, Australia

Abstract

Orthodontic root resorption is a common side effect of orthodontic therapy. It has been shown that high hydrostatic pressure in the periodontal ligament (PDL) generated by orthodontic forces will trigger recruitment of odontoclasts, leaving resorption craters on root surfaces. The patterns of resorption craters are the traces of odontoclast activity. This study aimed to investigate resorptive patterns by: (i) quantifying spatial root resorption under two different levels of in vivo orthodontic loadings using microCT imaging techniques and (ii) correlating the spatial distribution pattern of resorption craters with the induced mechanobiological stimulus field in PDL through nonlinear finite-element analysis (FEA) in silico . Results indicated that the heavy force led to a larger total resorption volume than the light force, mainly by presenting greater individual crater volumes ( p < 0.001) than increasing crater numbers, suggesting that increased mechano-stimulus predominantly boosted cellular resorption activity rather than recruiting more odontoclasts. Furthermore, buccal–cervical and lingual–apical regions in both groups were found to have significantly larger resorption volumes than other regions ( p < 0.005). These clinical observations are complemented by the FEA results, suggesting that root resorption was more likely to occur when the volume average compressive hydrostatic pressure exceeded the capillary blood pressure (4.7 kPa).

Funder

Deutsche Forschungsgemeinschaft

Australian Research Council

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3