Terahertz: dictating the frequency of life. Do macromolecular vibrational modes impose thermal limitations on terrestrial life?

Author:

Hand Kieran,Yates EdwinORCID

Abstract

Conditions on exoplanets include elevated temperatures and pressures. The response of carbon-based biological macromolecules to such conditions is then relevant to the viability of life. The capacity of proteins and ribozymes to catalyse reactions or bind receptors, and nucleic acids to convey information, depends on them sampling different conformational states. These are determined by macromolecular vibrational states, or phonon modes, accessible using terahertz (THz: 10 12 Hz) absorption spectroscopy. THz spectra of biological macromolecules exhibit broad absorption at approximately 6 THz (equating to approx. 280 K) corresponding to dense transitions between phonon modes. There are also troughs at approximately 10 THz (approx. 500 K) implying diminishing numbers of available conformational states at higher temperatures; hence, fewer routes by which biochemical processes can be realized, as equilibrium is approached. Could this conformational bottleneck hinder the operation of biological macromolecules at higher temperatures? We suggest that the troughs at approximately 10 THz in absorbance spectra indicate that the hydrogen bonds, charge interactions and geometry of biological macromolecules associated with terrestrial life impose fundamental vibrational properties that could limit the upper temperature at which they may function.

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3