Scrutinizing the feasibility of macroscopic quantum coherence in the brain: a field-theoretical model of cortical dynamics

Author:

Keppler Joachim

Abstract

The neural activity patterns associated with advanced cognitive processes are characterized by a high degree of collective organization, which raises the question of whether macroscopic quantum phenomena play a significant role in cortical dynamics. In order to pursue this question and scrutinize the feasibility of macroscopic quantum coherence in the brain, a model is developed regarding the functioning of microcolumns, which are the basic functional units of the cortex. This model assumes that the operating principle of a microcolumn relies on the interaction of a pool of neurotransmitter (glutamate) molecules with the vacuum fluctuations of the electromagnetic field, termed zero-point field (ZPF). Quantitative calculations reveal that the coupling strength of the glutamate pool to the resonant ZPF modes lies in the critical regime in which the criterion for the initiation of a phase transition is fulfilled, driving the ensemble of initially independent molecules toward a coherent state and resulting in the formation of a coherence domain that extends across the full width of a microcolumn. The formation of a coherence domain turns out to be an energetically favored state shielded by a considerable energy gap that protects the collective state against thermal perturbations and entails decoherence being greatly slowed down. These findings suggest that under the special conditions encountered in cortical microcolumns the emergence of macroscopic quantum phenomena is feasible. This conclusion is further corroborated by the insight that the presence of a coherence domain gives rise to downstream effects which may be crucial for the cortical communication and the formation of large-scale activity patterns. Taken together, the presented model sheds new light on the fundamental mechanism underlying cortical dynamics and suggests that long-range synchronization in the brain results from a bottom-up orchestration process involving the ZPF.

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3