Contact inhibition of locomotion probabilities drive solitary versus collective cell migration

Author:

Desai Ravi A.12,Gopal Smitha B.1,Chen Sophia1,Chen Christopher S.1

Affiliation:

1. Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA

2. Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany

Abstract

Contact inhibition of locomotion (CIL) is the process whereby cells collide, cease migrating in the direction of the collision, and repolarize their migration machinery away from the collision. Quantitative analysis of CIL has remained elusive because cell-to-cell collisions are infrequent in traditional cell culture. Moreover, whereas CIL predicts mutual cell repulsion and ‘scattering’ of cells, the same cells in vivo are observed to undergo CIL at some developmental times and collective cell migration at others. It remains unclear whether CIL is simply absent during collective cell migration, or if the two processes coexist and are perhaps even related. Here, we used micropatterned stripes of extracellular matrix to restrict cell migration to linear paths such that cells polarized in one of two directions and collisions between cells occurred frequently and consistently, permitting quantitative and unbiased analysis of CIL. Observing repolarization events in different contexts, including head-to-head collision, head-to-tail collision, collision with an inert barrier, or no collision, and describing polarization as a two-state transition indicated that CIL occurs probabilistically, and most strongly upon head-to-head collisions. In addition to strong CIL, we also observed ‘trains’ of cells moving collectively with high persistence that appeared to emerge from single cells. To reconcile these seemingly conflicting observations of CIL and collective cell migration, we constructed an agent-based model to simulate our experiments. Our model quantitatively predicted the emergence of collective migration, and demonstrated the sensitivity of such emergence to the probability of CIL. Thus CIL and collective migration can coexist, and in fact a shift in CIL probabilities may underlie transitions between solitary cell migration and collective cell migration. Taken together, our data demonstrate the emergence of persistently polarized, collective cell movement arising from CIL between colliding cells.

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Reference64 articles.

1. Contact inhibition and malignancy

2. Contact inhibition in tissue culture

3. Observations on the social behaviour of cells in tissue culture

4. Analysing collisions between fibroblasts and fibrosarcoma cells: fibrosarcoma cells show an active invasionary response;Paddock SW;J. Cell Sci.,1986

5. Contact inhibition of locomotion in vivo controls neural crest directional migration

Cited by 78 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3