Locating the source of large-scale outbreaks of foodborne disease

Author:

Horn Abigail L.12ORCID,Friedrich Hanno3ORCID

Affiliation:

1. Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany

2. Institute for Data, Systems, and Society, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA

3. Kühne Logistics University, Großer Grasbrook 17, 20457 Hamburg, Germany

Abstract

In today’s globally interconnected food system, outbreaks of foodborne disease can spread widely and cause considerable impact on public health. We study the problem of identifying the source of emerging large-scale outbreaks of foodborne disease; a crucial step in mitigating their proliferation. To solve the source identification problem, we formulate a probabilistic model of the contamination diffusion process as a random walk on a network and derive the maximum-likelihood estimator for the source location. By modelling the transmission process as a random walk, we are able to develop a novel, computationally tractable solution that accounts for all possible paths of travel through the network. This is in contrast to existing approaches to network source identification, which assume that the contamination travels along either the shortest or highest probability paths. We demonstrate the benefits of the multiple-paths approach through application to different network topologies, including stylized models of food supply network structure and real data from the 2011 Shiga toxin-producing Escherichia coli outbreak in Germany. We show significant improvements in accuracy and reliability compared with the relevant state-of-the-art approach to source identification. Beyond foodborne disease, these methods should find application in identifying the source of spread in network-based diffusion processes more generally, including in networks not well approximated by tree-like structure.

Funder

Bayer Foundation

Robert Wood Johnson Foundation

Deutsche Forschungsgemeinschaft

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3