Machine learning approach as an early warning system to prevent foodborne Salmonella outbreaks in northwestern Italy

Author:

Garcia-Vozmediano AitorORCID,Maurella Cristiana,Ceballos Leonardo A.,Crescio Elisabetta,Meo Rosa,Martelli Walter,Pitti Monica,Lombardi Daniela,Meloni Daniela,Pasqualini Chiara,Ru Giuseppe

Abstract

AbstractSalmonellosis, one of the most common foodborne infections in Europe, is monitored by food safety surveillance programmes, resulting in the generation of extensive databases. By leveraging tree-based machine learning (ML) algorithms, we exploited data from food safety audits to predict spatiotemporal patterns of salmonellosis in northwestern Italy. Data on human cases confirmed in 2015–2018 (n = 1969) and food surveillance data collected in 2014–2018 were used to develop ML algorithms. We integrated the monthly municipal human incidence with 27 potential predictors, including the observed prevalence of Salmonella in food. We applied the tree regression, random forest and gradient boosting algorithms considering different scenarios and evaluated their predictivity in terms of the mean absolute percentage error (MAPE) and R2. Using a similar dataset from the year 2019, spatiotemporal predictions and their relative sensitivities and specificities were obtained. Random forest and gradient boosting (R2 = 0.55, MAPE = 7.5%) outperformed the tree regression algorithm (R2 = 0.42, MAPE = 8.8%). Salmonella prevalence in food; spatial features; and monitoring efforts in ready-to-eat milk, fruits and vegetables, and pig meat products contributed the most to the models’ predictivity, reducing the variance by 90.5%. Conversely, the number of positive samples obtained for specific food matrices minimally influenced the predictions (2.9%). Spatiotemporal predictions for 2019 showed sensitivity and specificity levels of 46.5% (due to the lack of some infection hotspots) and 78.5%, respectively. This study demonstrates the added value of integrating data from human and veterinary health services to develop predictive models of human salmonellosis occurrence, providing early warnings useful for mitigating foodborne disease impacts on public health.

Funder

Ministero della Salute

Publisher

Springer Science and Business Media LLC

Reference66 articles.

1. World Health Organization (2015) WHO estimates of the global burden of foodborne diseases: Foodborne Disease Burden Epidemiology Reference Group 2007–2015. https://apps.who.int/iris/handle/10665/199350 Accessed 20 Apr 2024

2. European Food Safety Authority EFSA, and European Centre for Disease Prevention and Control, ECDC (2022) The European Union One Health 2021 Zoonoses Report. EFSA J 20:7666. https://doi.org/10.2903/j.efsa.2022.7666

3. Directive 2003/99/EC of the European Parliament and of the Council of 17 November 2003 on the monitoring of zoonoses and zoonotic agents, amending Council Decision 90/424/EEC and repealing Council Directive 92/117/EEC

4. Decision No. 1082/2013/EU of the European Parliament and of the Council of 22 October 2013 on serious cross-border threats to health and repealing Decision No 2119/98/EC Text with EEA relevance

5. European Centre for Disease Prevention and Control, ECDC (2022) The European Surveillance System (TESSy). https://www.ecdc.europa.eu/en/publications-data/european-surveillance-system-tessy. Accessed 18 Apr 2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3