The attenuated spline reconstruction technique for single photon emission computed tomography

Author:

Protonotarios Nicholas E.12ORCID,Fokas Athanassios S.134,Kostarelos Kostas56ORCID,Kastis George A.1ORCID

Affiliation:

1. Research Center of Mathematics, Academy of Athens, Athens 11527, Greece

2. Department of Mathematics, National Technical University of Athens, Zografou Campus, Athens 15780, Greece

3. Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK

4. Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089, USA

5. Nanomedicine Laboratory, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK

6. National Graphene Institute, University of Manchester, Manchester M13 9PL, UK

Abstract

We present the attenuated spline reconstruction technique (aSRT) which provides an innovative algorithm for single photon emission computed tomography (SPECT) image reconstruction. aSRT is based on an analytic formula of the inverse attenuated Radon transform. It involves the computation of the Hilbert transforms of the linear attenuation function and of two sinusoidal functions of the so-called attenuated sinogram . These computations are achieved by employing the attenuation information provided by computed tomography (CT) scans and by utilizing custom-made cubic spline interpolation. The purpose of this work is: (i) to present the mathematics of aSRT, (ii) to reconstruct simulated and real SPECT/CT data using aSRT and (iii) to evaluate aSRT by comparing it to filtered backprojection (FBP) and to ordered subsets expectation minimization (OSEM) reconstruction algorithms. Simulation studies were performed by using an image quality phantom and an appropriate attenuation map. Reconstructed images were generated for 45, 90 and 180 views over 360 degrees with 20 realizations and involved Poisson noise of three different levels (NL), namely 100% (NL1), 50% (NL2) and 10% (NL3) of the total counts, respectively. Moreover, real attenuated SPECT sinograms were reconstructed from a real study of a Jaszczak phantom, as well as from a real clinical myocardial SPECT/CT study. Comparisons between aSRT, FBP and OSEM reconstructions were performed using contrast, bias and image roughness. The results suggest that aSRT can efficiently produce accurate attenuation-corrected reconstructions for simulated and real phantoms, as well as for clinical data. In particular, in the case of the clinical myocardial study, aSRT produced reconstructions with higher cold contrast than both FBP and OSEM. aSRT, by incorporating the attenuation correction within itself, may provide an improved alternative to FBP. This is particularly promising for ‘cold’ regions as those occurring in myocardial ischaemia.

Funder

Alexander S. Onassis Public Benefit Foundation

Engineering and Physical Sciences Research Council

Research Committee of the Academy of Athens

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3