Myocardial Perfusion Single-Photon Emission Computed Tomography (SPECT) Image Denoising: A Comparative Study

Author:

Rahimian Abdurrahim1,Etehadtavakol Mahanaz1,Moslehi Masoud1,Ng Eddie Y. K.2ORCID

Affiliation:

1. Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81745-33871, Iran

2. School of Mechanical and Aerospace Engineering, College of Engineering, Nanyang Technological University, Singapore 639798, Singapore

Abstract

The present study aimed to evaluate the effectiveness of different filters in improving the quality of myocardial perfusion single-photon emission computed tomography (SPECT) images. Data were collected using the Siemens Symbia T2 dual-head SPECT/Computed tomography (CT) scanner. Our dataset included more than 900 images from 30 patients. The quality of the SPECT was evaluated after applying filters such as the Butterworth, Hamming, Gaussian, Wiener, and median–modified Wiener filters with different kernel sizes, by calculating indicators such as the signal-to-noise ratio (SNR), peak signal-to-noise ratio (PSNR), and contrast-to-noise ratio (CNR). SNR and CNR were highest with the Wiener filter with a kernel size of 5 × 5. Additionally, the Gaussian filter achieved the highest PSNR. The results revealed that the Wiener filter, with a kernel size of 5 × 5, outperformed the other filters for denoising images of our dataset. The novelty of this study includes comparison of different filters to improve the quality of myocardial perfusion SPECT. As far as we know, this is the first study to compare the mentioned filters on myocardial perfusion SPECT images, using our datasets with specific noise structures and mentioning all the elements necessary for its presentation within one document.

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3