Biomechanics of shear-sensitive adhesion in climbing animals: peeling, pre-tension and sliding-induced changes in interface strength

Author:

Labonte David12ORCID,Federle Walter2ORCID

Affiliation:

1. Department of Engineering, University of Cambridge, Cambridge CB2 3EJ, UK

2. Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK

Abstract

Many arthropods and small vertebrates use adhesive pads for climbing. These biological adhesives have to meet conflicting demands: attachment must be strong and reliable, yet detachment should be fast and effortless. Climbing animals can rapidly and reversibly control their pads' adhesive strength by shear forces, but the mechanisms underlying this coupling have remained unclear. Here, we show that adhesive forces of stick insect pads closely followed the predictions from tape peeling models when shear forces were small, but strongly exceeded them when shear forces were large, resulting in an approximately linear increase of adhesion with friction. Adhesion sharply increased at peel angles less than ca 30°, allowing a rapid switch between attachment and detachment. The departure from classic peeling theory coincided with the appearance of pad sliding, which dramatically increased the peel force via a combination of two mechanisms. First, partial sliding pre-stretched the pads, so that they were effectively stiffer upon detachment and peeled increasingly like inextensible tape. Second, pad sliding reduces the thickness of the fluid layer in the contact zone, thereby increasing the stress levels required for peeling. In combination, these effects can explain the coupling between adhesion and friction that is fundamental to adhesion control across all climbing animals. Our results highlight that control of adhesion is not solely achieved by direction-dependence and morphological anisotropy, suggesting promising new routes for the development of controllable bio-inspired adhesives.

Funder

Human Frontier Science Programme

Clare College, University of Cambridge

Biotechnology and Biological Sciences Research Council

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Reference55 articles.

1. Locomotion and adhesion: dynamic control of adhesive surface contact in ants

2. Dynamics of geckos running vertically

3. Rapid preflexes in smooth adhesive pads of insects prevent sudden detachment

4. Adhesion, friction, and compliance of bio-mimetic and bio-inspired structured interfaces;Jagota A;Mater. Sci. Eng. R,2011

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3