Evolution of cooperation on large networks with community structure

Author:

Fotouhi Babak12ORCID,Momeni Naghmeh13ORCID,Allen Benjamin145ORCID,Nowak Martin A.167

Affiliation:

1. Program for Evolutionary Dynamics, Harvard University, Cambridge, MA, USA

2. Institute for Quantitative Social Sciences, Harvard University, Cambridge, MA, USA

3. Massachusetts Institute of Technology (MIT) - Sloan School of Management, Cambridge, MA, USA

4. Center for Mathematical Sciences and Applications, Harvard University, Cambridge, MA, USA

5. Department of Mathematics, Emmanuel College, Boston, MA, USA

6. Department of Mathematics, Harvard University, Cambridge, MA, USA

7. Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA

Abstract

Cooperation is a major factor in the evolution of human societies. The structure of social networks, which affects the dynamics of cooperation and other interpersonal phenomena, have common structural signatures. One of these signatures is the tendency to organize as groups. This tendency gives rise to networks with community structure, which are composed of distinct modules. In this paper, we study analytically the evolutionary game dynamics on large modular networks in the limit of weak selection. We obtain novel analytical conditions such that natural selection favours cooperation over defection. We calculate the transition point for each community to favour cooperation. We find that a critical inter-community link creation probability exists for given group density, such that the overall network supports cooperation even if individual communities inhibit it. As a byproduct, we present solutions for the critical benefit-to-cost ratio which perform with remarkable accuracy for diverse generative network models, including those with community structure and heavy-tailed degree distributions. We also demonstrate the generalizability of the results to arbitrary two-player games.

Funder

Division of Mathematical Sciences

John Templeton Foundation

James S. McDonnell Foundation

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 77 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3