Abstract
AbstractCollective cooperation is essential for many social and biological systems, yet understanding how it evolves remains a challenge. Previous investigations report that the ubiquitous heterogeneous individual connections hinder cooperation by assuming individuals update strategies at identical rates. Here we develop a general framework by allowing individuals to update strategies at personalised rates, and provide the precise mathematical condition under which universal cooperation is favoured. Combining analytical and numerical calculations on synthetic and empirical networks, we find that when individuals’ update rates vary inversely with their number of connections, heterogeneous connections actually outperform homogeneous ones in promoting cooperation. This surprising property undercuts the conventional wisdom that heterogeneous structure is generally antagonistic to cooperation and, further helps develop an efficient algorithm OptUpRat to optimise collective cooperation by designing individuals’ update rates in any population structure. Our findings provide a unifying framework to understand the interplay between structural heterogeneity, behavioural rhythms, and cooperation.
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献