Abstract
In this paper, we propose a new method for computing a distance between two shapes embedded in three-dimensional space. Instead of comparing directly the geometric properties of the two shapes, we measure the cost of deforming one of the two shapes into the other. The deformation is computed as the geodesic between the two shapes in the space of shapes. The geodesic is found as a minimizer of the Onsager–Machlup action, based on an elastic energy for shapes that we define. Its length is set to be the integral of the action along that path; it defines an intrinsic quasi-metric on the space of shapes. We illustrate applications of our method to geometric morphometrics using three datasets representing bones and teeth of primates. Experiments on these datasets show that the variational quasi-metric we have introduced performs remarkably well both in shape recognition and in identifying evolutionary patterns, with success rates similar to, and in some cases better than, those obtained by expert observers.
Funder
Ministry of Education of Singapore
Subject
Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Editorial;Progress in Biophysics and Molecular Biology;2019-05