Mapping brains without coordinates

Author:

Kötter Rolf1,Wanke Egon2

Affiliation:

1. C.&O. Vogt Brain Research Institute and Institute of Anatomy II, Heinrich Heine University DüsseldorfMoorenstrasse 5, D-40225 Düsseldorf, Germany

2. Institute of Computer Science, Heinrich Heine University DüsseldorfUniversitätsstr. 1, D-40225 Düsseldorf, Germany

Abstract

Brain mapping has evolved considerably over the last century. While most emphasis has been placed on coordinate-based spatial atlases, coordinate-independent parcellation-based mapping is an important technique for accessing the multitude of structural and functional data that have been reported from invasive experiments, and provides for flexible and efficient representations of information. Here, we provide an introduction to motivations, concepts, techniques and implications of coordinate-independent mapping of microstructurally or functionally defined brain structures. In particular, we explain the problems of constructing mapping paths and finding adequate heuristics for their evaluation. We then introduce the three auxiliary concepts of acronym-based mapping (AM), of a generalized hierarchy (GM ontology), and of a topographically oriented regional map (RM) with adequate granularity for mapping between individual brains with different cortical folding and between humans and non-human primates. Examples from the CoCoMac database of primate brain connectivity demonstrate how these concepts enhance coordinate-independent mapping based on published relational statements. Finally, we discuss the strengths and weaknesses of spatial coordinate-based versus coordinate-independent microstructural brain mapping and show perspectives for a wider application of parcellation-based approaches in the integration of multi-modal structural, functional and clinical data.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3