Cytokine storms and pyroptosis are primarily responsible for the rapid death of mice infected with pseudorabies virus

Author:

Sun Wei1ORCID,Liu Shanshan12ORCID,Huang Xuefei1,Yuan Rui12,Yu Jiansheng12

Affiliation:

1. College of Agriculture, Tongren Polytechnic College, Bijiang District, Tongren City, Guizhou 554300, People's Republic of China

2. National and Local Engineering Research Centre for Separation and Purification Ethnic Chinese Veterinary Herbs, Tongren City, Guizhou 554300, People's Republic of China

Abstract

Pseudorabies virus (PRV), the causative agent of Aujeszky's disease, is one of the most harmful pathogens to the pig industry. PRV can infect and kill a variety of mammals. Nevertheless, the underlying pathogenesis related to PRV is still unclear. This study aims to investigate the pathogenesis induced by PRV in a mouse model. The mice infected with the PRV-HLJ strain developed severe clinical manifestations at 36 h post-infection (hpi), and mortality occurred within 48–72 hpi. Hematoxylin-eosin staining and qRT-PCR methods were used to detect the pathological damage and expression of cytokines related to an immune reaction in brain tissue, respectively. The cytokine storms caused by IFN-α, IFN- β , TNF-α, IL-1 β , IL-6 and IL-18 were related to the histopathological changes induced by PRV. This pattern of cytokine secretion depicts an image of typical cytokine storms, characterized by dysregulated secretion of pro-inflammatory cytokines and imbalanced pro-inflammatory and anti-inflammatory responses. In addition, the pyroptosis pathway was also activated by PRV by elevating the expression levels of nod-like receptor protein 3, Caspase-1, Gasdermin-D and interleukin-1 β /18. These findings provide a way for further understanding the molecular basis in PRV pathogenesis.

Funder

Guizhou Science and Technology Planing Project

Tongren Science and Technology Planing Project

Publisher

The Royal Society

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3