Experimental cooling during incubation leads to reduced innate immunity and body condition in nestling tree swallows

Author:

Ardia Daniel R.1,Pérez Jonathan H.2,Clotfelter Ethan D.2

Affiliation:

1. Department of Biology, Franklin & Marshall College, Lancaster, PA 17604, USA

2. Department of Biology, Amherst College, Amherst, MA 01002, USA

Abstract

Nest microclimate can have strong effects that can carry over to later life-history stages. We experimentally cooled the nests of tree swallows ( Tachycineta bicolor ). Females incubating in cooled nests reduced incubation time and allowed egg temperatures to drop, leading to extended incubation periods. We partially cross-fostered nestlings to test carry-over effects of cooling during incubation on nestling innate constitutive immunity, assessed through bacteria killing ability (BKA) of blood. Nestlings that had been cooled as eggs showed a lower ability to kill bacteria than control nestlings, regardless of the treatment of their foster mother. However, there was no effect of treatment of rearing females on nestling BKA in control nestlings, even though cooled females made significantly fewer feeding visits than did control females. This suggests that the effect of cooling occurred during incubation and was not due to carry-over effects on nestling condition. Nestlings that were exposed to experimental cooling as embryos had lower residual body mass and absolute body mass at all four ages measured. Our results indicate that environmental conditions and trade-offs experienced during one stage of development can have important carry-over effects on later life-history stages.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 187 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3