Up and away: ontogenic transference as a pathway for aerial dispersal of microplastics

Author:

Al-Jaibachi Rana1,Cuthbert Ross N.12ORCID,Callaghan Amanda1ORCID

Affiliation:

1. Ecology and Evolutionary Biology, School of Biological Sciences, University of Reading, Harborne Building, Reading RG6 6AS, UK

2. Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, Belfast BT9 7BL, UK

Abstract

Microplastics (MPs) are ubiquitous pollutants found in marine, freshwater and terrestrial ecosystems. With so many MPs in aquatic systems, it is inevitable that they will be ingested by aquatic organisms and be transferred up through the food chain. However, to date, no study has considered whether MPs can be transmitted by means of ontogenic transference, i.e. between life stages that use different habitats. Here, we determine whether fluorescent polystyrene beads could transfer between Culex mosquito life stages and, particularly, could move into the flying adult stage. We show for the first time that MPs can be transferred ontogenically from a feeding (larva) into a non-feeding (pupa) life stage and subsequently into the adult terrestrial life stage. However, transference is dependent on particle size, with smaller 2 µm MPs transferring readily into pupae and adult stages, while 15 µm MPs transferred at a significantly reduced rate. MPs appear to accumulate in the Malpighian tubule renal excretion system. The transfer of MPs to the adults represents a potential aerial pathway to contamination of new environments. Thus, any organism that feeds on terrestrial life phases of freshwater insects could be impacted by MPs found in aquatic ecosystems.

Funder

University of Reading

Department for the Economy, Northern Ireland

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,Agricultural and Biological Sciences (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3