Parallel evolution of mound-building and grass-feeding in Australian nasute termites

Author:

Arab Daej A.1,Namyatova Anna2,Evans Theodore A.3,Cameron Stephen L.4,Yeates David K.5,Ho Simon Y. W.1ORCID,Lo Nathan1ORCID

Affiliation:

1. School of Life and Environmental Sciences, University of Sydney, Sydney 2006, New South Wales, Australia

2. School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney 2052, New South Wales, Australia

3. School of Animal Biology, University of Western Australia, Perth 6009, Western Australia, Australia

4. Department of Entomology, Purdue University, West Lafayette, IN 47907, USA

5. Australian National Insect Collection, CSIRO National Research Collections Australia, Canberra 2601, Australian Capital Territory, Australia

Abstract

Termite mounds built by representatives of the family Termitidae are among the most spectacular constructions in the animal kingdom, reaching 6–8 m in height and housing millions of individuals. Although functional aspects of these structures are well studied, their evolutionary origins remain poorly understood. Australian representatives of the termitid subfamily Nasutitermitinae display a wide variety of nesting habits, making them an ideal group for investigating the evolution of mound building. Because they feed on a variety of substrates, they also provide an opportunity to illuminate the evolution of termite diets. Here, we investigate the evolution of termitid mound building and diet, through a comprehensive molecular phylogenetic analysis of Australian Nasutitermitinae. Molecular dating analysis indicates that the subfamily has colonized Australia on three occasions over the past approximately 20 Myr. Ancestral-state reconstruction showed that mound building arose on multiple occasions and from diverse ancestral nesting habits, including arboreal and wood or soil nesting. Grass feeding appears to have evolved from wood feeding via ancestors that fed on both wood and leaf litter. Our results underscore the adaptability of termites to ancient environmental change, and provide novel examples of parallel evolution of extended phenotypes.

Funder

Kuwait Ministry of Higher Education

Commonwealth Environmental Research Facilities Program

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,Agricultural and Biological Sciences (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3