Revised systematic position of Nasutitermes brevipilus Emerson, 1925 (Isoptera: Termitidae: Nasutitermitinae) and the designation of Hyleotermes gen. nov.

Author:

CUEZZO CAROLINA,SCHEFFRAHN RUDOLF H.ORCID,CONSTANTINO REGINALDOORCID

Abstract

A new monotypic nasute termite genus, Hyleotermes gen. nov., is proposed for Nasutitermes brevipilus Emerson, 1925. Hyleotermes brevipilus, comb. nov., is redescribed and illustrated based on the morphology of the imago, soldier, and worker castes. It is expanded into Amazonia. The soldier of Hyleotermes differs from that of Nasutitermes Dudley, 1890 in that the former has a long and cylindrical nasus and the head capsule lacks long setae and is covered with microscopic setae. Unlike the worker of Nasutitermes, the Hyleotermes worker has a short mixed segment and an enteric valve is adorned with narrow spines on conical bases. The phylogenetic position of H. brevipilus comb nov., is reconstructed based on a dataset with two mitochondrial markers (COI and 16SrRNA) for 36 terminals, under maximum likelihood and Bayesian inference. Results corroborate that this species is unrelated to Nasutitermes and should be excluded from the genus.  

Publisher

Magnolia Press

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Reference2 articles.

1.

Arab, D.A., Namyatova, A., Evans, T.A., Cameron, S.L., Yeates, D.K., Ho, S.Y. & Lo, N. (2017) Parallel evolution of mound-building and grass-feeding in Australian nasute termites. Biology Letters, 13, 20160665. https://doi.org/10.1098/rsbl.2016.0665
Bourguignon, T., Lo, N., Šobotník, J., Ho, S.Y.W., Iqbal, N., Coissac, E., Lee, M., Jendryka, M.M., Sillam-Dussès, D., Křížková, B., Roisin, Y. & Evans T.A. (2017) Mitochondrial phylogenomics resolves the global spread of higher termites, ecosystem engineers of the tropics. Molecular Biology and Evolution, 34, 589–597. https://doi.org/10.1093/molbev/msw253
Boulogne, I., Constantino, R., Amusant, N., Falkowski, M., Rodrigues, A.M.S. & Houël, E. (2017) Ecology of termites from the genus Nasutitermes (Termitidae: Nasutitermitinae) and potential for science-based development of sustainable pest management programs. Journal of Pest Science, 90, 19–37. https://doi.org/10.1007/s10340-016-0796-x
Constantino, R. (1991) Ereymatermes rotundiceps, new genus and species of termite from the Amazon Basin (Isoptera, Termitidae, Nasutitermitidae). Goeldiana Zoologia, 8, 1–11.
Constantino, R. (2002) Notes on the type-species and synonymy of the genus Nasutitermes (Isoptera: Termitidae: Nasutitermitinae). Sociobiology, 40, 533–537.
Dietrich, C. & Brune, A. (2016) The complete mitogenomes of six higher termite species reconstructed from metagenomic datasets (Cornitermes sp., Cubitermes ugandensis, Microcerotermes parvus, Nasutitermes corniger, Neocapritermes taracua, and Termes hospes). Mitochondrial DNA, Part A, 27, 3903–3904. https://doi.org/10.3109/19401736.2014.987257
Emerson, A.E. (1925) The termites from Kartabo, Bartica District, Guyana. Zoologica, 6, 291–459. https://doi.org/10.5962/p.190324
Fontes, L.R. (1986) Morphology of the worker digestive tube of the soil-feeding nasute termites (Isoptera, Termitidae, Nasutitermitinae) from the Neotropical region. Revista brasileira de Zoologia, 3, 475–501. https://doi.org/10.1590/S0101-81751986000400002
Hadley, A. (2010) CombineZP. Software. Available from: http://www.hadleyweb.pwp.blueyonder.co.uk (accessed 22 September 2022)
Hajibabaei, M., Janzen, D.H., Burns, J.M., Hallwachs, W. & Hebert, P.D. (2006) DNA barcodes distinguish species of tropical Lepidoptera. Proceedings of the National Academy of Sciences, 103, 968–971. https://doi.org/10.1073/pnas.0510466103
Hoang, D.T., Chernomor, O., Haeseler, A. von, Minh, B.Q. & Vinh, L.S. (2018) UFBoot2: Improving the Ultrafast Bootstrap Approximation. Molecular Biology and Evolution, 35, 518–522. https://doi.org/10.1093/molbev/msx281
Kambhampati, S. & Smith, P.T. (1995) PCR primers for the amplification of four insect mitochondrial gene fragments. Insect Molecular Biology, 4, 233–236. https://doi.org/10.1111/j.1365-2583.1995.tb00028.x
Katoh, K. & Standley, D.M. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30, 772–780. https://doi.org/10.1093/molbev/mst010
Katoh, K., Misawa, K., Kuma, K. & Miyata, T. (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research, 30, 3059–3066. https://doi.org/10.1093/nar/gkf436
Krishna, K., Grimaldi, D.A., Krishna, V. & Engel, M.S. (2013) Treatise on the Isoptera of the world. Bulletin of the American Museum of Natural History, 377, 1–2704. https://doi.org/10.1206/377.1 https://doi.org/10.1206/377.2 https://doi.org/10.1206/377.3 https://doi.org/10.1206/377.4 https://doi.org/10.1206/377.5 https://doi.org/10.1206/377.6 https://doi.org/10.1206/377.7
Lanfear, R., Calcott, B., Ho, S.Y. & Guindon, S. (2012) PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution, 29, 1695–1701. https://doi.org/10.1093/molbev/mss020
Lanfear, R., Frandsen, P.B., Wright, A.M., Senfeld, T. & Calcott, B. (2016) PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution, 34, 772–773. https://doi.org/10.1093/molbev/msw260
Mathews, A.G.A. (1977) Studies on Termites from Mato Grosso State, Brazil. Academia Brasileira de Ciências, Rio de Janeiro, 267 pp.
Nguyen, L.-T., Schmidt, H.A., von Haeseler, A. & Minh, B.Q. (2015) IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32, 268–274. https://doi.org/10.1093/molbev/msu300
Noirot, C. (2001) The gut of termites (Isoptera). Comparative anatomy, systematics, phylogeny. I. Higher termites (Termitidae). Annales de la Société Entomologique de France, 37, 431–471.
Rambaut, A., Suchard, M.A, Xie, D. & Drummond, A.J. (2014) Tracer. Version 1.6. Available from: http://beast.bio.ed.ac.uk/Tracer (accessed 22 September 2022)
Ronquist, F. & Huelsenbeck, J.P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572–1574.
Roonwal, M.L. (1970) Measurement of termites (Isoptera) for taxonomic purposes. Journal of the Zoological Society of India, 21, 9–66.
Roy, V., Constantino, R., Chassany, V., Giusti‐Miller, S., Diouf, M., Mora, P. & Harry, M. (2014) Species delimitation and phylogeny in the genus Nasutitermes (Termitidae: Nasutitermitinae) in French Guiana. Molecular Ecology, 23, 902–920. https://doi.org/10.1111/mec.12641
Sands, W.A. (1965) A revision of the termite subfamily Nasutitermitinae (Isoptera, Termitidae) from the Ethiopian region. Bulletin of the British Museum (Natural History), Entomology, 4, 1–172.
Sands, W.A. (1998) The identification of worker castes of termite genera from soils of Africa and the Middle East. Cab International, Wallingford, 475 pp., 18 pls.
Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H. & Flook, P. (1994) Evolution, weighting and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America, 87, 651–701. https://doi.org/10.1093/aesa/87.6.651
Snyder, T.E. (1949) Catalog of the termites (Isoptera) of the World. Smithsonian Miscellaneous Collections, 112, 1–490.
deWaard, J.R., Ivanova, N.V., Hajibabaei, M. & Hebert, P.D.N. (2008) Assembling DNA Barcodes: Analytical Protocols. In: Cristofre, M.C. (Ed.), Methods in Molecular Biology 410: Environmental Genetics. Humana Press, Totowa, New Jersey, pp. 275–293. https://doi.org/10.1007/978-1-59745-548-0_15
Wessel, P. & Smith, W.H.F. (1998) New, improved version of Generic Mapping Tools released. EOS, Transactions of the American Geophysical Union, 79, 579. https://doi.org/10.1029/98EO00426

2.

 

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3