Drought-induced forest decline: causes, scope and implications

Author:

Martínez-Vilalta Jordi1,Lloret Francisco1,Breshears David D.2

Affiliation:

1. CREAF/Unitat d'Ecologia, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain

2. School of Natural Resources and the Environment, and Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA

Abstract

A large number of episodes of forest mortality associated with drought and heat stress have been detected worldwide in recent decades, suggesting that some of the world's forested ecosystems may be already responding to climate change. Here, we summarize a special session titled ‘Drought-induced forest decline: causes, scope and implications’ within the 12th European Ecological Federation Congress, held in Ávila (Spain) from 25 to 29 September 2011. The session focused on the interacting causes and impacts of die-off episodes at the community and ecosystem levels, and highlighted recent events of drought- and heat-related tree decline, advances in understanding mechanisms and in predicting mortality events, and diverse consequences of forest decline. Talks and subsequent discussion noted a potentially important role of carbon that may be interrelated with plant hydraulics in the multi-faceted process leading to drought-induced mortality; a substantial and yet understudied capacity of many forests to cope with extreme climatic events; and the difficulty of separating climate effects from other anthropogenic changes currently shaping forest dynamics in many regions of the Earth. The need for standard protocols and multi-level monitoring programmes to track the spatio-temporal scope of forest decline globally was emphasized as critical for addressing this emerging environmental issue.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,Agricultural and Biological Sciences (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3