A negative experiment relating to Magnetism and the Earth's Rotation

Author:

Abstract

The discovery by Babcock of the magnetism of certain rapidly rotating stars led me to study the hypothesis, first clearly discussed by Schuster and by Wilson, that the magnetism of rotating astronomical bodies might be due to some new and general property of matter. The well-known theoretical difficulties attending such a view were matched by the difficulty of finding a quantitative explanation of even the earth’s magnetic field in terms of the known laws of physics. A detailed study of the possibility of making a direct test of the Schuster-Wilson hypothesis, by measuring the very small magnetic field of the order of 10 -9 G which would be produced by a rotating body of reasonable size in the laboratory, led me to conclude that the experiment would perhaps be possible but would certainly be exceedingly difficult. However, a much easier but still worth-while subsidiary experiment presented itself. This was to test whether a massive body, in fact a 10 x 10 cm gold cylinder, at rest in the laboratory and so rotating with the earth, would appear to an observer, also rotating with the earth, to produce a weak magnetic field with a magnitude of the order of 10 -8 G. That such a field might exist is a plausible deduction from a particular form of the Schuster-Wilson hypothesis considered in some detail by Runcorn and by Chapman. This paper describes the design, construction and use of a magnetometer with which this ‘static-body experiment’ was carried out. Since few detailed studies of the design of sensitive magnetometers to measure steady fields appear to have been made since the days of the classical experiments of Rowland and of Eichenwald, I found it necessary to investigate the theory and use of such an instrument in considerable detail. The bulk of this paper, that is, §§ 2 to 5, is concerned with this instrumental study. The actual static-body experiment is described in § 6, and it is there shown that no such field as is predicted by the modified Schuster-Wilson hypothesis is found. This result is in satisfactory agreement with the independent refutation of the hypothesis by the measurements by Runcorn and colleagues of the magnetic field of the earth underground. When the magnetometer was completed it was found to be very suitable for the measurement of the remanent magnetism of weakly magnetized specimens, in particular certain sedimentary rocks.

Publisher

The Royal Society

Subject

General Engineering

Reference10 articles.

1. Aschenbrenner H . & Goubau G. 1936 Hochfrequenztech.

2. Babcock H . W. 1947a Astrophys. J. 105 105.

3. 6 Phys;Babcock H. W.;Rev.,1947

4. Brownian Motion as a Natural Limit to all Measuring Processes

5. Gyromagnetic and Electron-Inertia Effects

Cited by 145 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3