Low costs of adaptation to dietary restriction

Author:

Moger-Reischer Roy Z.1ORCID,Snider Elizabeth V.1,McKenzie Kelsey L.1,Lennon Jay T.1ORCID

Affiliation:

1. Department of Biology, Indiana University, Bloomington, IN 47405, USA

Abstract

Dietary restriction (DR) is the most successful and widespread means of extending organismal lifespan. However, the evolutionary basis of life extension under DR remains uncertain. The traditional evolutionary explanation is that when organisms experience DR, they allocate endogenous resources to survival and postpone reproduction until conditions improve. However, this life-extension strategy should be maladaptive if DR continues for multiple generations due to trade-offs between longevity and reproduction. To test this prediction, we subjected the budding yeast Saccharomyces cerevisiae to 1800 generations of evolution on restricted versus non-restricted diets. Adaptation to a non-restricted diet improved reproductive fitness by 57%, but provided a much smaller (14%) advantage on a restricted diet. By contrast, adaptation to DR resulted in an approximately 35% increase in reproductive fitness on both restricted and non-restricted diets. Importantly, the life-extending effect of DR did not decrease following long-term evolution on the restricted diet. Thus, contrary to theoretical expectations, we found no evidence that the life-extending DR response became maladaptive during multigenerational DR. Together, our results suggest that the DR response has a low cost and that this phenomenon may have evolved as part of a generalist strategy that extends beyond the benefits of postponing reproduction.

Funder

National Science Foundation

National Aeronautics and Space Administration

Army Research Office

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,Agricultural and Biological Sciences (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3