Evolution Under Dietary Restriction Increases Reproduction at the Cost of Decreased Somatic Growth

Author:

Huang Zhi-Yu1,Xi Yi-Long1,Wang Qiao1,Li Zi-Ai1,Shi Bao-Chun1,Ge Ya-Li1

Affiliation:

1. Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-funded by Anhui Province and Ministry of Education of the People’s Republic of China, School of Ecology and Environment, Anhui Normal University , Wuhu, Anhui , China

Abstract

Abstract Dietary restriction (DR) is cited as the most reliable means of extending life span in a wide range of taxa, yet the evolutionary basis of the DR effect on life span remains unclear. The resource reallocation hypothesis proposes that the longevity-extending response of DR is adaptive and stems from the reallocation of resources from reproduction to somatic maintenance under food-limited conditions. However, if DR continues for multiple generations, such a response becomes maladaptive, and genotypes with higher fecundity should be selectively favored over genotypes with longer longevity. To test this prediction, we exposed replicate populations of the rotifer Brachionus dorcas, a model organism for aging and experimental evolution studies, to DR and ad-libitum (AL) diets for 100 days. During the selection experiment, AL-selected populations showed higher growth rates and mictic ratios than DR-selected populations. After approximately 27 asexual generations of selection, populations with a DR selection history had a higher net reproductive rate but lower body volume and ingestion rate in the absence of survival costs than populations with an AL selection history when they were assayed on an AL diet. Our results are inconsistent with the prediction that evolution on sustained DR increases reproduction and reduces life span, and show for the first time that sustained DR selects for clones with higher energy investment in reproduction but lower investment in somatic growth.

Funder

Natural Science Foundation of China

University Synergy Innovation Program of Anhui Province

Publisher

Oxford University Press (OUP)

Subject

Geriatrics and Gerontology,Aging

Reference49 articles.

1. Extending healthy life span—from yeast to humans;Fontana;Science.,2010

2. Evolution of aging;Kirkwood;Nature.,1977

3. Natural selection for extended longevity from food restriction;Harrison;Growth Dev Aging.,1988

4. Food restriction, evolution and ageing;Kirkwood;Mech Ageing Dev.,2005

5. Genetic variation of dietary restriction and the effects of nutrient-free water and amino acid supplements on lifespan and fecundity of Drosophila;Dick;Genet Res.,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3