Post-activation muscle potentiation and its relevance to cyclical behaviours

Author:

Taylor-Burt Kari R.1ORCID,Konow Nicolai12ORCID,Biewener Andrew A.1ORCID

Affiliation:

1. Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138 USA

2. Department of Biological Sciences, University of Massachusetts Lowell, 198 Riverside Street, Lowell, MA 01854, USA

Abstract

Muscle can experience post-activation potentiation (PAP), a temporary increase in force and rate of force development, when contractions are closely timed; therefore, cyclical behaviours are likely affected by PAP, as succeeding contraction cycles can lead to potentiation over several subsequent cycles. Here, we examined PAP during in situ cyclical contractions of the mallard lateral gastrocnemius (LG). Surface swimming, a cyclical behaviour, was mimicked with work-loops using in vivo LG length change and stimulation parameters. Tests were performed at mallards' preferred cycle frequency as well as at lower and higher frequencies. Like muscles from mammals, anurans and arthropods, the mallard LG exhibited PAP with increases in peak force, average force rate and net work. Staircase potentiation occurred over two or more work-loop cycles, resulting in gradual increases in PAP. The number of cycles needed to reach maximum work varied with cycle frequency, requiring more cycles at higher cycle frequencies. PAP occurred under in vivo -like stimulation parameters, suggesting a potentially important role of PAP in animal locomotion, especially in cyclical behaviours.

Funder

Organismic & Evolutionary Biology, Harvard University

Harvard University

National Institute of Arthritis and Musculoskeletal and Skin Diseases

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,Agricultural and Biological Sciences (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3