Potentiation of in vitro concentric work in mouse fast muscle

Author:

Grange R. W.1,Vandenboom R.1,Xeni J.1,Houston M. E.1

Affiliation:

1. Department of Kinesiology, Faculty of Applied Health Sciences, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

Abstract

Grange, R. W., R. Vandenboom, J. Xeni, and M. E. Houston.Potentiation of in vitro concentric work in mouse fast muscle. J. Appl. Physiol. 84(1): 236–243, 1998.—Phosphorylation of myosin regulatory light chain (R-LC) is associated with potentiated work and power during twitch afterloaded contractions in mouse extensor digitorum longus muscle [R. W. Grange, C. R. Cory, R. Vandenboom, and M. E. Houston. Am. J. Physiol. 269 ( Cell Physiol. 38): C713–C724, 1995]. We now describe the association between R-LC phosphorylation and potentiated concentric work when the extensor digitorum longus muscle is rhythmically shortened and lengthened to simulate contractions in vivo. Work output (at 25°C) was characterized at sine frequencies of 3, 5, 7, 10, and 15 Hz at excursions of 0.6, 1.2, and 1.6 mm (∼5, 9, and 13% optimal muscle length) at a low level of R-LC phosphorylation. Muscles stimulated during the sine function with a single twitch at specific times before or after the longest muscle length yielded maximal concentric work near the longest muscle length at a sine frequency of 7 Hz (e.g., excursion ∼9% optimal muscle length = 1.6 J/kg). Power increased linearly between sine frequencies of 3 and 15 Hz at all excursions (maximum ∼29 W). After a 5-Hz 20-s conditioning stimulus and coincident with a 3.7-fold increase in R-LC phosphate content (e.g., from 0.19 to 0.70 mol phosphate/mol R-LC), work at the three excursions and a sine frequency of 7 Hz was potentiated a mean of 25, 44, and 50% ( P < 0.05), respectively. The potentiated work during rhythmic contractions is consistent with enhanced interaction between actin and myosin in the force-generating states. On the basis of observations in skinned skeletal muscle fibers (H. L. Sweeney and J. T. Stull. Proc. Natl. Acad. Sci. USA 87: 414–418, 1990), this enhancement could result from increased phosphate incorporation by the myosin R-LC. Under the assumption that the predominant effect of the conditioning stimulus was to increase R-LC phosphate content, our data suggest that a similar mechanism may be evident in intact muscle.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3